
Surprises, Bugs, and Deep Dives:
Lessons from a Python Upgrade

PyWeb, July 2025

bit.ly/py312-upgrade
Yonatan Bitton

@bityob

https://bit.ly/py312-upgrade
https://linktr.ee/bityob

whoami
Developer on the Core team at Fortinet
We provide cybersecurity protection for emails and more
Passionate about Python, enjoy solving tough challenges and
understanding things inside out

🐍 Python 3.9 → 3.12: The Upgrade Journey

Agenda / Upgrade Trail Map

Agenda / Upgrade Trail Map
Stage 0: Why upgrade? Why 3.12? Strategy?

Agenda / Upgrade Trail Map
Stage 0: Why upgrade? Why 3.12? Strategy?
Stage 1: Build Python 3.12

Agenda / Upgrade Trail Map
Stage 0: Why upgrade? Why 3.12? Strategy?
Stage 1: Build Python 3.12
Stage 2: Installing & Resolving Package Issues

Agenda / Upgrade Trail Map
Stage 0: Why upgrade? Why 3.12? Strategy?
Stage 1: Build Python 3.12
Stage 2: Installing & Resolving Package Issues
Stage 3: Running & Fixing

Agenda / Upgrade Trail Map
Stage 0: Why upgrade? Why 3.12? Strategy?
Stage 1: Build Python 3.12
Stage 2: Installing & Resolving Package Issues
Stage 3: Running & Fixing
Stage 4: Running 4k Tests — Reality Check

Agenda / Upgrade Trail Map
Stage 0: Why upgrade? Why 3.12? Strategy?
Stage 1: Build Python 3.12
Stage 2: Installing & Resolving Package Issues
Stage 3: Running & Fixing
Stage 4: Running 4k Tests — Reality Check
Stage 5: QA + ~500 automation end-to-end flows

Agenda / Upgrade Trail Map
Stage 0: Why upgrade? Why 3.12? Strategy?
Stage 1: Build Python 3.12
Stage 2: Installing & Resolving Package Issues
Stage 3: Running & Fixing
Stage 4: Running 4k Tests — Reality Check
Stage 5: QA + ~500 automation end-to-end flows
Stage 6: Production rollout & real-world bugs

Day 0

Stage 0: Why Upgrade? Why 3.12?

Stage 0: Why Upgrade? Why 3.12?
3.9 is EOL — security & ecosystem pressure

Stage 0: Why Upgrade? Why 3.12?
3.9 is EOL — security & ecosystem pressure
3.12 is fast, stable, mature

Stage 0: Why Upgrade? Why 3.12?
3.9 is EOL — security & ecosystem pressure
3.12 is fast, stable, mature
3.13 is too new — risky deps

Stage 0: Why Upgrade? Why 3.12?
3.9 is EOL — security & ecosystem pressure
3.12 is fast, stable, mature
3.13 is too new — risky deps
Large-scale pipeline — emails, files, links → scan → forward

Stage 0: Why Upgrade? Why 3.12?
3.9 is EOL — security & ecosystem pressure
3.12 is fast, stable, mature
3.13 is too new — risky deps
Large-scale pipeline — emails, files, links → scan → forward
Thousands of pods, millions of scans hourly

Stage 0: Why Upgrade? Why 3.12?
3.9 is EOL — security & ecosystem pressure
3.12 is fast, stable, mature
3.13 is too new — risky deps
Large-scale pipeline — emails, files, links → scan → forward
Thousands of pods, millions of scans hourly
Strategy: 2 full local envs (3.9 & 3.12), side by side

Stage 0: Why Upgrade? Why 3.12?
3.9 is EOL — security & ecosystem pressure
3.12 is fast, stable, mature
3.13 is too new — risky deps
Large-scale pipeline — emails, files, links → scan → forward
Thousands of pods, millions of scans hourly
Strategy: 2 full local envs (3.9 & 3.12), side by side
Compare outputs, debug diffs, document all

Day 1

Stage 1: Build Python 3.12

Stage 1: Build Python 3.12
Need OpenSSL 1.1.1 — not v3

Stage 1: Build Python 3.12
Need OpenSSL 1.1.1 — not v3
OpenSSL 3 blocks legacy SMTP servers

Stage 1: Build Python 3.12
Need OpenSSL 1.1.1 — not v3
OpenSSL 3 blocks legacy SMTP servers
Recompiled Python 3.12 with OpenSSL 1.1.1

Stage 1: Build Python 3.12
Need OpenSSL 1.1.1 — not v3
OpenSSL 3 blocks legacy SMTP servers
Recompiled Python 3.12 with OpenSSL 1.1.1
Packed to ZIP → used in Docker build.

Stage 1: Build Details
Downloading required python source
wget https://www.python.org/ftp/python/3.12.9/Python-3.12.9.tgz
tar -xvf Python-3.12.9.tgz
cd Python-3.12.9

1
2
3
4

 5
Building python with openssl and pip to dedicated path6
./configure -C --with-ensurepip=install --with-openssl=/usr/local/ssl --prefix=/Python-3.12.97
make clean8
make -s -j49
./python -m ensurepip --default-pip10
make install11
 12
Saving the compiled python to zip file for later use13
cd ..14
tar -cvzf Python-3.12.9-openssl-1.1.1.built.tgz ./Python-3.12.9/compiled15

Stage 1: Build Details
Downloading required python source
wget https://www.python.org/ftp/python/3.12.9/Python-3.12.9.tgz
tar -xvf Python-3.12.9.tgz
cd Python-3.12.9

1
2
3
4

 5
Building python with openssl and pip to dedicated path6
./configure -C --with-ensurepip=install --with-openssl=/usr/local/ssl --prefix=/Python-3.12.97
make clean8
make -s -j49
./python -m ensurepip --default-pip10
make install11
 12
Saving the compiled python to zip file for later use13
cd ..14
tar -cvzf Python-3.12.9-openssl-1.1.1.built.tgz ./Python-3.12.9/compiled15

Building python with openssl and pip to dedicated path
./configure -C --with-ensurepip=install --with-openssl=/usr/local/ssl --prefix=/Python-3.12.9
make clean
make -s -j4
./python -m ensurepip --default-pip
make install

Downloading required python source1
wget https://www.python.org/ftp/python/3.12.9/Python-3.12.9.tgz2
tar -xvf Python-3.12.9.tgz3
cd Python-3.12.94
 5

6
7
8
9
10
11

 12
Saving the compiled python to zip file for later use13
cd ..14
tar -cvzf Python-3.12.9-openssl-1.1.1.built.tgz ./Python-3.12.9/compiled15

Stage 1: Build Details
Downloading required python source
wget https://www.python.org/ftp/python/3.12.9/Python-3.12.9.tgz
tar -xvf Python-3.12.9.tgz
cd Python-3.12.9

1
2
3
4

 5
Building python with openssl and pip to dedicated path6
./configure -C --with-ensurepip=install --with-openssl=/usr/local/ssl --prefix=/Python-3.12.97
make clean8
make -s -j49
./python -m ensurepip --default-pip10
make install11
 12
Saving the compiled python to zip file for later use13
cd ..14
tar -cvzf Python-3.12.9-openssl-1.1.1.built.tgz ./Python-3.12.9/compiled15

Building python with openssl and pip to dedicated path
./configure -C --with-ensurepip=install --with-openssl=/usr/local/ssl --prefix=/Python-3.12.9
make clean
make -s -j4
./python -m ensurepip --default-pip
make install

Downloading required python source1
wget https://www.python.org/ftp/python/3.12.9/Python-3.12.9.tgz2
tar -xvf Python-3.12.9.tgz3
cd Python-3.12.94
 5

6
7
8
9
10
11

 12
Saving the compiled python to zip file for later use13
cd ..14
tar -cvzf Python-3.12.9-openssl-1.1.1.built.tgz ./Python-3.12.9/compiled15

Saving the compiled python to zip file for later use
cd ..
tar -cvzf Python-3.12.9-openssl-1.1.1.built.tgz ./Python-3.12.9/compiled

Downloading required python source1
wget https://www.python.org/ftp/python/3.12.9/Python-3.12.9.tgz2
tar -xvf Python-3.12.9.tgz3
cd Python-3.12.94
 5
Building python with openssl and pip to dedicated path6
./configure -C --with-ensurepip=install --with-openssl=/usr/local/ssl --prefix=/Python-3.12.97
make clean8
make -s -j49
./python -m ensurepip --default-pip10
make install11
 12

13
14
15

Stage 1: Build Usage
RUN wget https://fake.io/Python-3.12.9-openssl-1.1.1.built.tgz -O Python.tgz &&\
 tar -xvf Python.tgz && \
 cp ./Python-3.12.9/compiled/* /usr/local/ -r
RUN python3 -c "import ssl; assert '1.1.1' in ssl.OPENSSL_VERSION"

Stage 2: Installing & Resolving Package Issues

Stage 2: Installing & Resolving Package Issues
Now Python 3.12 is ready to use

Stage 2: Installing & Resolving Package Issues
Now Python 3.12 is ready to use
Install packages using uv sync (similar to pip install)

Stage 2: Installing & Resolving Package Issues
Now Python 3.12 is ready to use
Install packages using uv sync (similar to pip install)
Expect install errors due to 3.12 incompatibilities

Stage 2: Installing & Resolving Package Issues
Now Python 3.12 is ready to use
Install packages using uv sync (similar to pip install)
Expect install errors due to 3.12 incompatibilities
Upgrade to latest version if possible

Stage 2: Installing & Resolving Package Issues
Now Python 3.12 is ready to use
Install packages using uv sync (similar to pip install)
Expect install errors due to 3.12 incompatibilities
Upgrade to latest version if possible
Otherwise, find first version supporting Python 3.12

cchardet example

longintrepr.h: No such file or directory

Source: https://github.com/PyYoshi/cchardet/issues/81

https://github.com/PyYoshi/cchardet/issues/81

Source: https://docs.python.org/3/whatsnew/3.11.html

https://docs.python.org/3/whatsnew/3.11.html

Package didn't update in last years

But there is a pre-release version

There is also a fork option

Although a popular fork exists, I chose to stick with the original
cchardet after verifying that the pre-release only included safe

recompilation changes — switching packages entirely felt riskier.

numpy example

Python 3.12 removed distutils

We can't upgrade numpy because an internal dependency is pinned to
this specific version

> $ uv lock
 × No solution found when resolving dependencies for split:
 ╰─▶ Because some-internal-package==1.0.67 depends on numpy==1.22.4 and your project depends
 on numpy>1.22.4,
 we can conclude that your project and some-internal-package==1.0.67 are incompatible.
 And because your project depends on some-internal-package==1.0.67,
 we can conclude that your project's requirements are unsatisfiable.

uv to the rescue!

Source: https://docs.astral.sh/uv/concepts/resolution/#dependency-constraints

https://docs.astral.sh/uv/concepts/resolution/#dependency-constraints

Unblocked upgrade with override-metadata; sent PR to fix deps.

Day 3

Stage 3: Running & Fixing

Stage 3: Running & Fixing
First full run under Python 3.12 exposed multiple issues

Stage 3: Running & Fixing
First full run under Python 3.12 exposed multiple issues
This stage is mostly trial-and-error: issues only revealed themselves
at runtime, requiring quick investigation and targeted fixes

Stage 3: Running & Fixing
First full run under Python 3.12 exposed multiple issues
This stage is mostly trial-and-error: issues only revealed themselves
at runtime, requiring quick investigation and targeted fixes
Common problems: missing imports, deprecated APIs, incompatible
packages

Stage 3: Running & Fixing
First full run under Python 3.12 exposed multiple issues
This stage is mostly trial-and-error: issues only revealed themselves
at runtime, requiring quick investigation and targeted fixes
Common problems: missing imports, deprecated APIs, incompatible
packages
After several iterations: ✅ system booted and app ran locally

pinecone example

But, why we failed on pinecone[grpc] which we didn't install?

Looks good, no?

Pinecone expected a missing grpc to raise ImportError, but it was
installed via an unrelated package with the wrong version — leading to

AttributeError instead

Day 5

Stage 4: Running 4k Tests — Reality Check

Stage 4: Running 4k Tests — Reality Check
Ran full test suite on GitHub & locally

Stage 4: Running 4k Tests — Reality Check
Ran full test suite on GitHub & locally
Most tests passed, but some (~100) failed

Stage 4: Running 4k Tests — Reality Check
Ran full test suite on GitHub & locally
Most tests passed, but some (~100) failed
Next: digging into a few tricky and interesting issues found

patool example

Tests are failing with an IndexError for some reason...

Let's debug it with pytest --trace

$BIN_PATH/pytest ./tests --lf -k test_mark_as_failed_passes_mal_verdict_to_root --trace

PatoolError: unknown archive format for file `/tmp/tmpxhyejsxy'

Verified in both environments that the patool version did not change

Confirmed that the input file used was exactly the same

Let's go deeper...

patoolib.get_archive_format(self.file_path)

patoolib.util.guess_mime(self.file_path)

We don't install file explicitly, so where it come from?

Checking for reverse dependency on file

$ apt-cache rdepends --installed file
file
Reverse Depends:
 libmagic1
 mailcap

Since no python3.9, must install mime-support explicitly

And indeed, after the fix, the tests are passing successfully

URL parsing example

python3.9
>>> find_urls_in_data("http:google.com")
[
 'http:///google.com'
]

python3.12
>>> find_urls_in_data("http:google.com")
[
 'http:google.com'
]

def find_urls_in_data(data)
 results = []

 for url in found_urls:
 # Until now, the same result on both versions
 results.append(
 # Meaning the problem is here...
 safe_url_decode(url)
)
 return results

def safe_url_decode(data)
 ...
 furl_url = furl.furl(url).url
 ...

for i in {9..12}; \
 do uvx --python 3.$i ipython -c \
 'import sys; print(sys.version); import urllib; urllib.parse.urlunsplit(("http", "", "google
done

for i in {1..9}; \
 do uvx --python 3.12.$i ipython -c \
 'import sys; print(sys.version); import urllib; urllib.parse.urlunsplit(("http", "", "google
done

Source: https://github.com/python/cpython/issues/85110

https://github.com/python/cpython/issues/85110

Beautiful Soup Example

Test failed because email output is different

python3.9
<html><body><div dir="ltr">HELLO </div>
</body></html>

python 3.12
<html>
 <body>
 <div dir="ltr">
 HELLO
 </div>
 </body>
</html>

Before set_payload, the payload looks the same

But after set_payload, the payload looks different

Let's try minimal repro in notebook...

Didn’t work

There is an hidden byte in HELLO last char... trying with bytes

Let's use pickle to be sure it's the real same object

This is weird... this is NOT simple string

What??

🤦

What's happening inside set_payload?

We call encode on the payload variable

Encoding bs4.BeautifulSoup vs encoding simple str

The commit set errors value to surrogateescape

How this errors is related at all? why only on bs4 object?

The surrogateescape string is going to indent_level variable...

No matter what string we use

It evaluates to True in a boolean context

Day 20

Stage 5: QA & End-to-End Testing

Stage 5: QA & End-to-End Testing
Deployed to full-scale testing environment, mirroring production

Stage 5: QA & End-to-End Testing
Deployed to full-scale testing environment, mirroring production
5 days of QA: human exploratory testing + ~500 automated E2E tests

Stage 5: QA & End-to-End Testing
Deployed to full-scale testing environment, mirroring production
5 days of QA: human exploratory testing + ~500 automated E2E tests
Monitored failures via Sentry, logs, and runtime alerts

SMTP starttls example

if not self.use_ssl and self.use_tls:
 self.connection.ehlo()
 context = None
 if self.ssl_certfile and self.ssl_keyfile:
 context = ssl.create_default_context()
 context.load_cert_chain(certfile=self.ssl_certfile, keyfile=self.ssl_keyfile)
 self.connection.starttls(context=context)
 self.connection.ehlo()

1
2
3
4
5
6
7
8

if not self.use_ssl and self.use_tls:
 self.connection.ehlo()
 context = None
 if self.ssl_certfile and self.ssl_keyfile:
 context = ssl.create_default_context()
 context.load_cert_chain(certfile=self.ssl_certfile, keyfile=self.ssl_keyfile)
 self.connection.starttls(context=context)
 self.connection.ehlo()

1
2
3
4
5
6
7
8

 context = ssl.create_default_context()
 context.load_cert_chain(certfile=self.ssl_certfile, keyfile=self.ssl_keyfile)

if not self.use_ssl and self.use_tls:1
 self.connection.ehlo()2
 context = None3
 if self.ssl_certfile and self.ssl_keyfile:4

5
6

 self.connection.starttls(context=context)7
 self.connection.ehlo()8

SAML example

No exception in Sentry, only the worker died suddenly🤷

No logs either

Let's try to reproduce the issue in shell

factory = APIRequestFactory()
user = User.objects.get(pk=12674)
payload = urlencode({'SAMLResponse': ''})
request = factory.post(
 '/api/saml_login/foobar/?acs',
 data=payload,
 content_type='application/x-www-form-urlencoded',
 HTTP_HOST="api.foo.bar.io",
 wsgi_url_scheme='https',
 SERVER_PORT='443',
)
force_authenticate(request, user=User.objects.get(pk=12674))
view = SamlAuthTokenViewSet.as_view({'post': 'post'})
view(request, uuid_id="f042fb42-4ac1-4e5a-bdb3-db286af56873")

Floating point exception?!

gdb $BIN_PATH/python core.2874

Related to xmlsec package

We use this package as part of with SAML signature validation process

Source: https://github.com/xmlsec/python-xmlsec/issues/277

https://github.com/xmlsec/python-xmlsec/issues/277

Minimal reproduce

import io
import xmlsec
from lxml import etree

stream = io.BytesIO(b"""<?xml version="1.0" encoding="UTF-8"?>
<Envelope xmlns="urn:envelope" ID="ef115a20-cf73-11e5-aed1-3c15c2c2cc88">
 <Data>
 Hello, World!
 </Data>
</Envelope>
""")
root = etree.parse(stream).getroot()
xmlsec.tree.add_ids(root, ["ID"])
print(etree.tostring(root, pretty_print=True).decode())

We use lxml to create xml object and then sending this object to xmlsec

But why does this cause a crash?

Using different libxml2 versions together...

Source: https://github.com/xmlsec/python-xmlsec/pull/246

https://github.com/xmlsec/python-xmlsec/pull/246

Source: https://python-social-auth.readthedocs.io/en/latest/backends/saml.html

https://python-social-auth.readthedocs.io/en/latest/backends/saml.html

Fix was to build lxml from source, so it will use the same system
libxml2 library

Stage 6: Production Rollout

Stage 6: Production Rollout
QA approved, all checks passed ✅

Stage 6: Production Rollout
QA approved, all checks passed ✅
Begin with partial rollout (e.g., APM pods)

Stage 6: Production Rollout
QA approved, all checks passed ✅
Begin with partial rollout (e.g., APM pods)
Gradual deployment by region — smallest to largest

Stage 6: Production Rollout
QA approved, all checks passed ✅
Begin with partial rollout (e.g., APM pods)
Gradual deployment by region — smallest to largest
Continuous monitoring:

Stage 6: Production Rollout
QA approved, all checks passed ✅
Begin with partial rollout (e.g., APM pods)
Gradual deployment by region — smallest to largest
Continuous monitoring:

No Sentry errors

Stage 6: Production Rollout
QA approved, all checks passed ✅
Begin with partial rollout (e.g., APM pods)
Gradual deployment by region — smallest to largest
Continuous monitoring:

No Sentry errors
No customer complaints

Stage 6: Production Rollout
QA approved, all checks passed ✅
Begin with partial rollout (e.g., APM pods)
Gradual deployment by region — smallest to largest
Continuous monitoring:

No Sentry errors
No customer complaints
System behaving as expected

Day 27
APM went well

Day 27
Australia too

Day 28
Even Europe...

Day 28
If all goes well until tomorrow, we will continue with US👏...

...But Things Didn't Go As Planned 😬

New SSL Errors, customers complains they don't get their emails...

Rollback all production 😔

Failing when we use STARTTLS, the context here is None

It's using the stdlib context method

Shouldn’t it work, assuming the context is less restricted?

openssl s_client -connect fake.domain:25 -starttls smtp

server = smtplib.SMTP('fake.domain', local_hostname=settings.NAT_DNS_NAME)
server.set_debuglevel(1)
server.ehlo(name=settings.NAT_DNS_NAME)
context = ssl._create_stdlib_context()
context.minimum_version = ssl.TLSVersion.TLSv1
server.starttls(context=context)
server.quit()

Maybe cipher related? looking for DHE-RSA-AES256-SHA

import ssl
context = ssl._create_stdlib_context()
print("\n".join(cipher['name'] for cipher in context.get_ciphers()))

Indeed not supported...

But our installed openssl is supporting this type of cipher

Let's try again with missing cipher...

server = smtplib.SMTP('fake.domain', local_hostname=settings.NAT_DNS_NAME)
server.set_debuglevel(1)
server.ehlo(name=settings.NAT_DNS_NAME)
context = ssl._create_stdlib_context()
context.minimum_version = ssl.TLSVersion.TLSv1
context.options &= ~ssl.OP_NO_SSLv3
context.check_hostname = False
context.verify_mode = ssl.CERT_NONE
context.set_ciphers(":".join([x["name"] for x in context.get_ciphers()] + [
 'DHE-RSA-AES256-SHA',
]))
server.starttls(context=context)
server.quit()

But wait — we’re already using OpenSSL v1, which is less strict by
default. So why did these errors appear only in Python 3.12, but not in

3.9?

Source: https://github.com/python/cpython/pull/25778

https://github.com/python/cpython/pull/25778

In Python 3.9, the default OpenSSL security level was 1. Starting from
Python 3.10, the default is level 2 — even when using OpenSSL 1

So, for legacy SMTP servers, we explicitly allow weaker SSL connections
— but the default configuration is now much stricter

if self.use_weak_ssl_encryption:
 # Setting @SECLEVEL=1
 # Adding missing ciphers removed in python3.10
 # Support minimum TLSv1 version
 # etc.
 context = self.create_weak_ssl_context()
else:
 context = ssl.create_default_context()

Day 30
✅ Python 3.12 fully deployed and stable in production.

Takeaways

Stage 1 Takeaways: Planning & Environment
Setup

Plan before you start: prepare robust local environments for
debugging
Audit your steps — documenting the path helps later
troubleshooting
Prefer the official Python builds when possible; if compiling
yourself, verify it thoroughly

Stage 2 Takeaways: Installing & Updating
Packages

Update to the latest package versions when compatible
Find the first version that supports Python 3.12 if needed
Some edge cases require manual overrides and patching
Be cautious with indirect dependencies — they may introduce silent
conflicts

Stage 3 Takeaways: Runtime Failures &
Debugging

Many issues appear only at runtime — trial and error is inevitable
Compare behavior across versions to pinpoint changes

Stage 4 Takeaways: Testing in CI & Local
Run your full test suite in both local and CI environments
If a test fails: don’t patch blindly — it might hide a deeper problem
Treat differences seriously — don’t ignore failing test
Even small Python upgrades may introduce meaningful changes in
behavior

Stage 5 Takeaways: QA & Monitoring
Use the full power of the QA team — they’ll catch what tests missed
Expect bugs in edge cases and workflows you didn’t simulate
Monitoring (logs, Sentry, metrics, customer feedback) is your safety
net

Stage 6 Takeaways: Production Deployment
Deploy slowly and incrementally — start with low-risk services
Production is always the best testing environment (for better or
worse)
Stay alert and respond quickly — be ready with hotfixes as needed

Final Recap: Key Lessons from the Upgrade
Upgrades are a journey, not a switch — plan, test, iterate
Python version changes can expose hidden tech debt
Good tooling (like uv, Sentry, CI) makes the process manageable
Stay curious, cautious, and collaborative

Thank You!
Any Questions?

bit.ly/py312-upgrade

Yonatan Bitton
@bityob

https://bit.ly/py312-upgrade
https://linktr.ee/bityob

